
Final Cheat Sheet

Useful Random Stuffs

Relationship Between Variables, Equations, and Solutions

For m equations and n variables. The coefficient matrix is Am×n.

Configuration r = rank(A) Consistency Possible Solution Types

m < n r = m Consistent Infinitely many solutions (n − r

parameters)

r < m Inconsistent No solutions

m = n r = n Consistent Unique solution

r < n Consistent Infinitely many solutions (n − r

parameters)

r < m Inconsistent No solutions

m > n r = n Consistent No solution or unique solution (depends 
on consistency)

r < n Consistent Infinitely many solutions (n − r

parameters)

r < m Inconsistent No solutions

Nilpotent Matrix

A matrix is nilpotent if Ak = 0 where k ≤ n. If A is nilpotent, I − A is invertible.

Determinants

Check for Basis

Show that S is a basis for V , knowing that |S| = dim(V ).

Note that dimension of subspace is the number of basis.

1. Triangular matrices have their determinants as the product of the diagonal entries.

2. cRi multiplies the determinant by c.

3. Ri ↔ Rj negates the determinant.

1. Show that S ⊆ V  and S is linearly independent.

2. OR Show that V ⊆ span(S).



Orthogonal Basis

If S = {u1, u2, … , uk} is an orthogonal basis for a subspace V , then for any v ∈ V :

v = (

v ⋅ u1

∥u1∥2
)u1 + (

v ⋅ u2

∥u2∥2
)u2 + ⋯ + (

v ⋅ uk

∥uk∥2
)uk.

If S is orthonormal, the denominators simplify to 1.

Linear Transformation and Basis

Useful Theorems

Full Rank Equal Number of Columns

Full Rank Equal Number of Rows

Equivalent Statements of Invertibility

Let S be the set of any basis. We can also write T (v) = [T ]S[v]S

If P is a transition matrix from standard basis to S, then A = [T ]SP.

1. Am×n is full rank where rank(A) = n.

2. Row(A) = R
n.

3. Columns of A are linearly independent.

4. Ax = 0 has only the trivial solution.

5. AT A is invertible with an order n.

6. A has left inverse.

7. T : Rn → R
m defined by A is injective if n ≤ m.

1. Am×n is full rank where rank(A) = m.

2. Col(A) = R
m.

3. Rows of A are linearly independent.

4. Ax = b is consistent for every b ∈ R
m

5. AAT  is invertible with an order m.

6. A has right inverse.

7. T : Rn → R
m defined by A is surjective if n ≥ m.

1. A and AT  is invertible, that is det(A) ≠ 0.

2. A is reduced to In in its RREF form, and could be represented as product of E.

3. Ax = b has a unique solution (trivial for homogeneous system).

4. The rows/columns are linearly independent and Row(A) = Col(A) = R
n.

5. A is full rank where rank(A) = n and nullity(A) = 0.

6. 0 is not an eigenvalue of A.

7. Any linear transformations defined by A is bijective (both injective and surjective).



Rank-Nullity Theorem

rank(A) + nullity(A) = n.

Equivalent Conditions for Orthogonality (Square Matrix)

Equivalent Statements of Diagonalizability (Square Matrix)

Matrix Factorization

LU Factorization (Square Matrices)

QR Factorization

Success

1. Row(A) is the span of non-zero rows of RREF of A.

2. Col(A) is the span of pivot columns of A as determined from its RREF. It is also

the range of linear transformation defined by A.

3. Null(A) is the solution space to Av = 0 and nullity(A) = dim(Null(A)). It is also

the kernel of linear transformation defined by A.

1. AT A = AAT = I.

2. The columns of A form an orthonormal basis for Rn.

3. The rows of A form an orthonormal basis for Rn.

1. There exists a set of eigenvectors of A that form a basis for Rn.

2. The characteristic polynomials of A could be split into linear factors.

3. Strictly, dim(Eλi
) = rλi

.

1. Reduce An to upper triangular matrixU using Ri + cijRj from top to bottom (i > j).

2. Construct L from In by replacing zeros at entry (i, j) with −cij.

3. Write A = LU.

4. If need to solve for Ax = b, solve for Ly = b then solve for Ux = y.

1. Perform Gram-Schmidt Orthogonalization on columns of A to get Q.

2. Compute R = QT A where R is a upper-triangular matrix with positive diagonal

entries.

3. Write A = QR.

4. To solve least square problems for Ax ≈ b, solve Rx = QT b instead of AT Ax = AT b.



Diagonalization

SVD Factorization

Note

Gram-Schmidt Orthogonalization

1. Set v1 = u1.

2. Compute vn = un −
n

∑

i=1

(

vi ⋅ un

∥vi∥2
vi).

3. Normalize each vi if required to obtain orthonormal set.

1. Find eigenvalues of An×n.

2. For each eigenvalue, compute the corresponding eigenspace (null space of λI − A).

3. Construct a matrix P from basis of each eigenspace.

4. Construct a matrix D by replacing diagonal entries in In with λ.

5. Write A = PDP−1.

Tip

If A = AT  (symmetric), we have P−1 = PT . This is called orthogonal diagonalization.

We may need to apply Gram-Schmidt Process vectors in P to get orthonormal

basis.

1. Compute AT A and use this matrix for all following steps.

2. Find eigenvalues (sorted in descending order) and create a matrix Σm×n by padding

diagonal matrix of order r with 0. The diagonal matrix has σi = √λi as their diagonal

entries.

3. Construct a matrix Vn×n using the same method for finding P.

4. Construct a matrix Um×m from ui = Avi/σi (with normalization). If r < m, get the extra

vectors by solving (u1 ⋯ ur)T x = 0.

5. Apply Gram-Schmidt Process on {ur+1, … , um}.

6. Write A = UΣVT .


