Final Cheat Sheet

Useful Random Stuffs

Relationship Between Variables, Equations, and Solutions

For *m* equations and *n* variables. The coefficient matrix is $A_{m \times n}$.

Configuration	$r=\mathrm{rank}(\mathbf{A})$	Consistency	Possible Solution Types
m < n	r = m	Consistent	Infinitely many solutions $(n - r)$ parameters)
	r < m	Inconsistent	No solutions
m = n	r = n	Consistent	Unique solution
	r < n	Consistent	Infinitely many solutions $(n - r)$ parameters)
	r < m	Inconsistent	No solutions
m > n	r = n	Consistent	No solution or unique solution (depends on consistency)
	r < n	Consistent	Infinitely many solutions $(n-r)$ parameters)
	r < m	Inconsistent	No solutions

Nilpotent Matrix

A matrix is nilpotent if $\mathbf{A}^k = \mathbf{0}$ where $k \leq n$. If \mathbf{A} is nilpotent, $\mathbf{I} - \mathbf{A}$ is invertible.

Determinants

- 1. Triangular matrices have their determinants as the product of the diagonal entries.
- 2. cR_i multiplies the determinant by c.
- 3. $R_i \leftrightarrow R_j$ negates the determinant.

Check for Basis

Show that S is a basis for V, knowing that $|S| = \dim(V)$.

- 1. Show that $S \subseteq V$ and S is linearly independent.
- 2. OR Show that $V \subseteq \operatorname{span}(S)$.

Note that dimension of subspace is the number of basis.

Orthogonal Basis

If $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ is an orthogonal basis for a subspace V, then for any $\mathbf{v} \in V$:

$$\mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{u}_1}{\|\mathbf{u}_1\|^2}\right) \mathbf{u}_1 + \left(\frac{\mathbf{v} \cdot \mathbf{u}_2}{\|\mathbf{u}_2\|^2}\right) \mathbf{u}_2 + \dots + \left(\frac{\mathbf{v} \cdot \mathbf{u}_k}{\|\mathbf{u}_k\|^2}\right) \mathbf{u}_k.$$

If *S* is orthonormal, the denominators simplify to 1.

Linear Transformation and Basis

- Let S be the set of any basis. We can also write $T(\mathbf{v}) = [T]_S[\mathbf{v}]_S$
- If **P** is a transition matrix from standard basis to S, then $\mathbf{A} = [T]_S \mathbf{P}$.

Useful Theorems

Full Rank Equal Number of Columns

- 1. $\mathbf{A}_{m \times n}$ is full rank where $\operatorname{rank}(\mathbf{A}) = n$.
- 2. Row(\mathbf{A}) = \mathbb{R}^n .
- 3. Columns of \mathbf{A} are linearly independent.
- 4. Ax = 0 has only the trivial solution.
- 5. $\mathbf{A}^T \mathbf{A}$ is invertible with an order *n*.
- 6. A has left inverse.
- 7. $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by **A** is injective if $n \leq m$.

Full Rank Equal Number of Rows

- 1. $\mathbf{A}_{m \times n}$ is full rank where $\operatorname{rank}(\mathbf{A}) = m$.
- 2. $\operatorname{Col}(\mathbf{A}) = \mathbb{R}^m$.
- 3. Rows of \mathbf{A} are linearly independent.
- 4. $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^m$
- 5. $\mathbf{A}\mathbf{A}^T$ is invertible with an order m.
- 6. A has right inverse.
- 7. $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by **A** is surjective if $n \ge m$.

Equivalent Statements of Invertibility

- 1. A and \mathbf{A}^T is invertible, that is $det(\mathbf{A}) \neq 0$.
- 2. A is reduced to I_n in its RREF form, and could be represented as product of E.
- 3. Ax = b has a unique solution (trivial for homogeneous system).
- 4. The rows/columns are linearly independent and $Row(\mathbf{A}) = Col(\mathbf{A}) = \mathbb{R}^n$.
- 5. A is full rank where rank(A) = n and rullity(A) = 0.
- 6. 0 is not an eigenvalue of \mathbf{A} .
- 7. Any linear transformations defined by \mathbf{A} is **bijective** (both injective and surjective).

Rank-Nullity Theorem

 $\operatorname{rank}(\mathbf{A}) + \operatorname{nullity}(\mathbf{A}) = n.$

✓ Success

- 1. Row(A) is the span of non-zero rows of RREF of A.
- 2. Col(**A**) is the span of pivot columns of **A** as determined from its RREF. It is also the range of linear transformation defined by **A**.
- 3. Null(A) is the solution space to Av = 0 and nullity(A) = dim(Null(A)). It is also the kernel of linear transformation defined by A.

Equivalent Conditions for Orthogonality (Square Matrix)

1. $\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = \mathbf{I}.$

- 2. The columns of **A** form an orthonormal basis for \mathbb{R}^n .
- 3. The rows of **A** form an orthonormal basis for \mathbb{R}^n .

Equivalent Statements of Diagonalizability (Square Matrix)

- 1. There exists a set of eigenvectors of \mathbf{A} that form a basis for \mathbb{R}^n .
- 2. The characteristic polynomials of A could be split into linear factors.
- 3. Strictly, $\dim(E_{\lambda_i}) = r_{\lambda_i}$.

Matrix Factorization

LU Factorization (Square Matrices)

- 1. Reduce \mathbf{A}_n to upper triangular matrix \mathbf{U} using $R_i + c_{ij}R_j$ from top to bottom (i > j).
- 2. Construct **L** from I_n by replacing zeros at entry (i, j) with $-c_{ij}$.
- 3. Write $\mathbf{A} = \mathbf{L}\mathbf{U}$.
- 4. If need to solve for Ax = b, solve for Ly = b then solve for Ux = y.

QR Factorization

- 1. Perform Gram-Schmidt Orthogonalization on columns of \mathbf{A} to get \mathbf{Q} .
- 2. Compute $\mathbf{R} = \mathbf{Q}^T \mathbf{A}$ where \mathbf{R} is a upper-triangular matrix with positive diagonal entries.
- 3. Write $\mathbf{A} = \mathbf{QR}$.
- 4. To solve least square problems for $\mathbf{A}\mathbf{x} \approx \mathbf{b}$, solve $\mathbf{R}\mathbf{x} = \mathbf{Q}^T \mathbf{b}$ instead of $\mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$.

🖉 Note

Gram-Schmidt Orthogonalization

1. Set $\mathbf{v_1} = \mathbf{u_1}$.

2. Compute
$$\mathbf{v_n} = \mathbf{u_n} - \sum_{i=1}^n \left(\frac{\mathbf{v}_i \cdot \mathbf{u}_n}{\|\mathbf{v}_i\|^2} \mathbf{v}_i \right)$$
.

3. Normalize each \mathbf{v}_i if required to obtain orthonormal set.

Diagonalization

- 1. Find eigenvalues of $\mathbf{A}_{n \times n}$.
- 2. For each eigenvalue, compute the corresponding eigenspace (null space of $\lambda I A$).
- 3. Construct a matrix **P** from basis of each eigenspace.
- 4. Construct a matrix **D** by replacing diagonal entries in \mathbf{I}_n with λ .
- 5. Write $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.

లి Tip

If $\mathbf{A} = \mathbf{A}^T$ (symmetric), we have $\mathbf{P}^{-1} = \mathbf{P}^T$. This is called orthogonal diagonalization. We may need to apply Gram-Schmidt Process vectors in \mathbf{P} to get orthonormal basis.

SVD Factorization

- 1. Compute $\mathbf{A}^T \mathbf{A}$ and use this matrix for all following steps.
- 2. Find eigenvalues (sorted in descending order) and create a matrix $\Sigma_{m \times n}$ by padding diagonal matrix of order r with 0. The diagonal matrix has $\sigma_i = \sqrt{\lambda_i}$ as their diagonal entries.
- 3. Construct a matrix $\mathbf{V}_{n \times n}$ using the same method for finding \mathbf{P} .
- 4. Construct a matrix $\mathbf{U}_{m \times m}$ from $\mathbf{u}_i = \mathbf{A}\mathbf{v}_i/\sigma_i$ (with normalization). If r < m, get the extra vectors by solving $(\mathbf{u}_1 \quad \cdots \quad \mathbf{u}_r)^T \mathbf{x} = 0$.
- 5. Apply Gram-Schmidt Process on $\{\mathbf{u}_{r+1}, \ldots, \mathbf{u}_m\}$.
- 6. Write $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.