Midterm Cheat Sheet

CS2100 Taken in AY2024/25 S2

Number Systems
Compatible Base Checking

: Checking base z for addition/subtraction operations.

Consider the first digit from LSB where adding digits cause overflow, i.e. the sum is
lesser than one of the original values.

Apply the formula: (digitl + digit2) % x = resultDigit and find z from here.
: Checking base for other operations. These problems mostly require brute force.
Complement Systems
Given that n/m is the number of integer/fractional digits
: X' =r" —r ™ — X (ranging from — ("1 — 1) tor" ! —1).
X" =" —r™ — X +1 (ranging from —r" ! to r" ! —1).
:= Example

Calculate 0101.11 — 010.0101 (in binary).

0101.1100 — 0010.0101 = 0101.1100 + (2* — 2~ — 0010.0101)
= 0101.1100 + (10000 — 0.0001 — 0010.0101) = 0101.1100 + (1111.1111 — 0010.0101)
= 0101.1100 + 1101.1010 = (1)0011.0110 = 0011.0111

Calculate 10's complement of —1 in 4 bits representation.

: —1 can be represented in 9's complement as 10* — 10 % — 1 = 9998 and as
9998 + 1 = 9999 in 10's complement.

/\ Warning

In base-r complements, digit weights are not applicable except when r = 2.

Always extend the digits in both integer and fractional parts to match the other
operands, as shown in the first example.

(r—1)'s complement propagates a carry-out to the end, whereas r's complement
will just ignore the carry.

IEEE-754 Representation

:= Example

Find the decimal value of 8xC4007000 .

Use the calculator to convert from hex to binary (group by 1, 8, 23 bits): 0b1
100010600 00006000111000000000000 .

Read the first bit (0 is positive and 1 is negative).

The next 8 bits are the exponent in Excess-127 format. 0b10001000 = 136
(Excess-127) =136 - 127 = 9 (in decimals).

Write the expression as +1.X X ... X x 2™ where X's are the remaining 23 bits =
—1.00000000111 x 2° which is -8b1000000001.11 (like scientific notation).

Convert the resulting binary bits into decimal using the calculator: -513.75.

: Decimal + 127 = Excess-127 and Excess-127 - 127 = Decimal. This formula can be
useful when converting the number back (from step 5. to 1.)

& Tip

The of the Excess-M system is from —(M — 1) to M.

The smallest positive number representable in the IEEE-754 format is given by:
1.00...0 x 27126,

The most negative number representable in the IEEE-754 format is given by:
—1.11...1x2%1%7,

C Programming

C always uses pass-by-value, but we can simulate

/\ Warning

An array name (arr) is a fixed pointer to its first element (&arr[0]), meaning
you can't reassign it (arrl = arr2 isinvalid).

When passed to functions, an array decays into a pointer to its first element.

struct objects are always passed by value (copied in full), except when passing
the pointers to the object.

Arrays of struct objects are effectively

To increment a pointer’s value, use (*p)+ . Writing *p+ increments the pointer
itself (by size in bytes of the corresponding data type), not the value it points to.

MIPS Programming
Instruction Encoding & Decoding

: Refer to the instruction sheet, write the entire instruction in binary, and then
convert to hex using the calculator.

: Convert hex to binary using the calculator. Write the encoded instruction.
After noting the , read the actual opcode to determine the type of the
instruction. The subsequent groupings depend on whether it is R (5/5/5/5/6), |
(5/5/16), or J (26) format.

Aside from the constant zeroes ($zero), we have t for temporaries and s for saved
temporaries.

$to $t1 $t2 $t3 $t4 $t5 $t6 $t7 $t8 $t9
01000 01001 01010 01017 01100 07101 01110 01111 11000 11001
$s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7

10000 100017 100170 10011 10100 10101 10110 101

The instruction can be determined using the funct field. The shift amount (shamt) is
only applicable to shift left/right logical instructions.

Mnemonic opcode rs rt rd shamt funct
(6) (5) (5) (5) (5) (6)

add rd, rs, rt 000000 rs rt rd 00000 100000

sub rd, rs, rt 000000 rs rt rd 00000 100010

s1l rd, rt, 000000 00000 rt rd shamt 000000

shamt

Mnemonic opcode rs rt rd
(6) (5) (5) (5)
srl rd, rt, 000000 00000 rt rd
shamt
and rd, rs, rt 000000 rs rt rd
or rd, rs, rt 000000 rs rt rd
xor rd, rs, rt 000000 rs rt rd
nor rd, rs, rt 000000 rs rt rd
slt rd, rs, rt 000000 rs rt rd
$ Tip
The of the R format instruction is always 000000 .

shamt funct
(5) (6)
shamt 000010

00000 100100
00000 100101
00000 100110
00000 100111
00000 101010

The immediate is always a 16-bit integer. You need to use load upper immediate (lui)
with ori (for the lower 16 bits) to extend it to 32 bits.

Mnemonic

beq rs, rt, relative address
bne rs, rt, relative address
addi rt, rs, immediate

andi rt, rs, immediate

ori rt, rs, immediate

xori rt, rs, immediate

lui rt, immediate

1b rt, immediate(rs)

1w rt, immediate(rs)

sb rt, immediate(rs)

sw rt, immediate(rs)

/\ Warning

opcode (6)
000100
000101
001000
001100
001101
001110
001111
100000
100011
101000
101011

rs (5)
rs
rs
rs
rs
rs
rs
00000
rs
rs
rs

rs

The number of words in the branch instruction is

is, we jumpto (PC + 4) + (Immediate * 4) if the branch is taken.

rt (5)
rt
rt
rt
rt
rt
rt
rt
rt
rt
rt

rt

immediate (16)
number of words
number of words
immediate
immediate
immediate
immediate
immediate
immediate
immediate
immediate

immediate

PC + 4. That

The memory address is always 32 bits. However, since it must be well-aligned with offsets
as multiples of 4, the last 2 bits can be ignored.

Mnemonic opcode (6) address (26)
j address 000010 26-bit target address (shifted left by 2 when used)

/\ Warning

The full address is formed using the upper 4 bits of PC + 4. This can cause jump
instructions to fail if PC is near a boundary—specifically, when the upper 4 bits of
PC + 4 differ from those of PC.

The maximum jump range in bytes is 228 from PC + 4 .In general, it follows the
formula: 2immediate s word size (4 in MIPS).

Instruction Set Architecture (ISA)
Maximum and Minimum Number of Instructions

: There is at least 1 instruction on each instruction type.

= Example

There are three types of instructions:
. Find the maximum and minimum total number of instructions.

Max = (28 — 2877 — 2874) 4 (1) + (1) = 240 (Maximize C / Minimize A and B)
Min = (2% — 1) + (27* — 1) + (28°7) = 24 (Maximize A and B / Minimize C)

In this example, we don't subtract 1 for the last instruction (C) since we don't need to
allocate anything for the subsequent instruction types.

: Each instruction type has a minimum required number of instructions, which may
vary, but some must be greater than 1.

:= Example

There are three types of instructions:
. We need at least 2 X-Type and Y-Type Instruction with at least 1 Z-Type

Instruction. Find the maximum and minimum total number of instructions.

: We use a similar approach as above but scale the relevant terms based on
the number of instructions allocated for each instruction type.

Max = (27 — 27%(2) — 2772(2)) + (2) + (2) = 48 + 2 + 2 = 50.
Min=(2+(22/2-1))+(2+(2*2/2-1)+(2"*) =3+3+8=14.

In this example, we need to allocate two instructions for X and Y. Note that the
minimum number of instructions does not need to be a power of two.

MIPS Datapath and Control

General Path

Refer to to trace the instruction execution path.
Instruction l
Memory 4_,\
R
PC Add M
Instruction 4 U
Left Shift X
Address O 2-bit PCS
- — o] Branch rc
=
(]
e b Inst [31:26] ::‘
NS (o)
)]) =
o 1 ——/
oy Inst [25:2[t] s
N /PR RD1
N : | st 120'-1l_/ﬁ5"—» RR2 MemWrite
L Registers
)
=) 5 WR
| M (Address
= RD2 M
A —E—IE)li | wp U Data MemToReg
a ne : Memory
s 5 [RegWrite - ALUcontrol Read M
e 2 RegDst Write Data
o Data U
. Inst [15:0] Sign || X
o8 =1Lz MemRead
°8

® Info

The multiplexer MemToReg is reversed only because the wires cross on the diagram.

S Tip
The for different types of instruction are shown below.

Instruction RegDst ALUSrc MemToReg RegWrite
R-type 1 0 0 1
w 0 1 1 1
sw X 1 X 0

Instruction RegDst ALUSrc MemToReg RegWrite
beq X 0 X 0

Instruction MemRead MemWrite Branch ALUop1 ALUOpO

R-type 0 0 0 1 0

w 1 0 0 0 0

sw 0 1 0 0 0

beq 0 0 1 0 1
Critical Path
:= Example

Given below are the resource latencies of various hardware components in
picoseconds (ps): (400 ps), (100 ps), (30 ps), (120 ps),
(200 ps), (350 ps), (100 ps),
(20 ps). Determine the latency for the instruction 1w $24,
0($15) .

: Fetching the instruction from memory takes . In parallel, PC
+ 4 is computed using an adder, costing 100 ps, but this is not critical.

Reading the opcode to determine the instruction type and field lengths takes
no time.
Reading data from the register file takes
The control unit determines control signals and propagates them in)
but this is not critical.
MUX inputs are pre-determined, so the RegDst and ALUSrc MUX takes no
additional time later. However, other MUXs still need to wait for the input.
: Computing the memory address using the ALU takes
: Reading data from memory takes
: The result passes through the MemToReg MUX and is
written to the register file, taking

400 + 200 + 120 + 350 + 230 = 1300 ps.

/\ Warning

For branch instructions, there is a parallel execution of steps 2 and 3, which involve
the following:

Sign-extending the immediate (20 ps),
Left-shifting by 2 (20 ps),
Addingto PC + 4 (100 ps).

This combined operation costs a total of , Which is less than the combined
latency of steps 2 and 3 in the above example.

After execution, the branch instruction waits at the PCSrc MUX for the is0? signal
from the ALU, which is ANDed with the branch signal (20 ps) before passing through
the MUX (30 ps).

ALU Slice
Ainvert Binvert Cin Operation
I |
*) 2
A [::>¢—//)
! \ Result
[)
N
N +

Cout

& Tip

The for different types of instruction are shown below.

Instruction ALUControl

w 0010
sw 0010
beq 0110

add 0010

Instruction ALUControl

sub 0110
and 0000
or 0001
slt 0111

The first two bits indicate A inverse and B inverse. B inverse is 1 only for
subtraction.

The last two bits follow the ALU slice's operation order: 00 for and, 01 for or,
10 for add,and 11 for slt (hidden).

:= Example

Given that all logic gates take 1 ps (picosecond) and MUXs take 2 ps, determine the
maximum latency of a 4-bit ALU.

Inputs A and B arrive in parallel. The longest delay comes from inverting both,
which takes max{1 + 2,1+ 2} = 3 ps.

All operation gates also run in parallel, taking max{1,1,1} = 1 ps for bit O.
However, carry propagation occurs from LSB to MSB. Since all slices operate in
parallel, bits 1, 2, and 3 must wait 1 ps per previous bit. This delay accumulates,
making the critical path for the MSB take 1 + 1 + 1 = 3 ps. Note that each 1
corresponds to the operation gate, not the propagation.

The total time so far is 6 ps. After passing through the operation MUX, the final
delay is 6 + 2 = 8 ps.

Good to Memorize

can be implemented by an instruction that avoids reading/writing
to memory or modifying registers.

is a set of 32 registers, excluding immediate values.
holds the encoded instruction currently being executed.
: The stack pointer ($sp) points to the last occupied location at the
top of the stack, which grows downward in memory.
: The moment when the program counter (PC) is
updated.

: The cycle time is determined by the slowest
instruction.

: Each instruction is broken into steps, with each step
taking one cycle. The overall cycle time depends on the slowest step.
slt : We get the sign bit from bit 31 and carry that to be bit as well

as setting the remaining bits to be 0. If the result is negative, bit 0 will be 1.

refers to the order in which bytes are arranged in a multi-byte word stored
in memory. In format, the most significant byte (MSB) is stored at the
lowest memory address, while in format, the least significant byte (LSB)
is stored at the lowest memory address.

1 - Combinational Circuits

Introduction

: Output depends only on the input.

: Output depends on both input and (can vary for the same
input).

Gate-Level (SSI) Design
Half Adder

A takes two inputs, X and Y, and produces two outputs: C (Carry Out) and S
(Sum).

@ Info

From the truth table:

C=X'Y
S=XeY

Y
0
1
0
1 1

- o o X
o o o 0O
o = = o on

-_

Logic diagram:

X Block diagram
* ‘j)—— s of Half Adder

R —— z —
X Half S
>__ C Y— Adder —C
(X+Y)
Full Adder (FA)
A extends the half adder by taking three inputs: X, Y, and Z. Here, Z represents

, Which allows proper binary addition.

/ Note
Using K-maps, we simplify the expressions:

C=X-Y+(XoY)-Z
S=Xa((Ye2)

Logic diagram:

: The bordered section of the diagram consists of two half adders, which is
why this is called a full adder.

v Success

To derive the expressions, note these

X+Y=(Xa®Y)+ (X Y)
XeY=X"Y+XY
(XoY)=X"Y'+X-Y

Block-Level Design

4-bit Parallel Adder

Adding 4-bit binary numbers requires to derive expressions. However,
we observe that: C;,1S; = X; + Y; + C;. This can be represented using a sequence of full

adders.

& Tip
Using full adders, for bit ¢, we simplify the expression as:

Cin=X; Y +(X;0Y;) -C;

S;i=X,0Y,®C;

Thus, we get the following circuit diagram, known as a

Y3 X3

Y, X,

Y X,

C,

~

Cs

-

C,

-

—

FA

FA

FA

FA

L]

L

L

L

Applications of Parallel Adder

: To convert a number to Excess-N format, add N to it.

This can be implemented using an adder circuit.

: Built using a series of 4-bit parallel adders.

Il oput

- Output

X16--X13 Y16--Y13 X12.-X9 Y12--Y9 X8-.X5 Y8--Y5 X4--X1 Y4--Y1
PR R E B E)
Ciy| 4-bit// | Cus| abity | Co| 4-bitys | Cs| 4bit | G
adder adder adder adder
A T S
S16--S13 S12--Sg SB"SS S4--S1

Magnitude Comparator
For n-bit unsigned values, compare bits from MSB to LSB. If the result is undecided,
continue until the LSB.

& Tip

To check if two bits are equal, use:

xZZAlBZ—{-A;B:

This expression is 1 when both A; and B; are either O or 1.

Z Note

For a 1-bit comparison:

A; > B; when A; - B;

The circuit follows this logic:
A;"B; + X;-A,"B,
+ X3°X2-A1"B1

A, X
3 1
A.B.' A;'-Bs
B, 3 D3
+ X3'Xp'X*Ag" By

fD— (A<B)

A3‘B3' + X3'A2'B2l
+ XS'Xz'A1'B1I

E? L‘ijg;

T

+ X3'Xp'Xy"Ag'By'
(A>B)

I

v ﬂ;)

(A=B)

X3'X2'X1 ‘Xo

: Before checking lower bits, ensure all upper bits are equal using AND with z;

We can further apply multiple comparator with AND/OR to check a
like X <Y < ZorX >YandY < Z conditions.

Circuit Delays

We assume all logic gates have the same delay, denoted by t. If the inputs to a gate arrive
at times t,, t,, ..., t,, the output becomes at:

max{ty,to,...,tn} +t.
= Example
Consider the delay of a full adder (FA) in a parallel adder:

All bit inputs arrive at time 0.

There is a delay before the from previous bits becomes available.

max(t,mt)+t

Si

t max(t,mt)+t

} max(t,mt)+2t
Lo o

mt

Fori=1,m = 0:
S, is ready at 2t
Cs is ready at 3t.
Fori=2,m = 3:
Ss is ready at 4t
Cjs is ready at 5¢.
Fori=3,m =5:
Ss is ready at 6t
Cy is ready at 7t.

In general, for an n-bit

The delay for S, is ((n — 1) x 2 4 2)t.
The delay for Cy, is ((n — 1) x 2 + 3)t.

The is determined by C,,.

2 - MSI Components

Introduction

refers to an containing
and

Decoders and Encoders

Decoders (DEC)

convert into up to . They are used to implement functions by
connecting their outputs to logic gates. The design is based on the or
expressions.

S(x, v, 2) == m(1,2,4,7)
C(x, y, z) = = m(3,5,6,7)

X y z C S
SE% o[L00 =[0 0 0 0 0
010 T~
; ———) s011 =[50 1 0 1
001X S; 3{000 8 } (1) (1) (1)
4l000
001y S, 000 00 1 0 O 0 1
011z — s Slooo | c001 101 10
’ “loos 1 1.0 10
=1 01 1 1 1
2 Note

: Notation n : 2™ or n x 27.

: Includes an extra enable signal that activates outputs
when the signal is 0 or 1, denoted with E or E.

: Uses outputs where 0 indicates active and 1
indicates inactive.

= Example

f(Q,X,P) =) m(0,1,4,6,7) = [[M(2,3,5)

f(Q, X, P) = mg + my +my +mg + my
f(Q, X, P) = (mgy-mj - my-mg-my)
f(Q, X, P) = (m2 + ms +ms)’ (Equivalent
to M, - M3 -M5)
f(Q, X, P) =mj-mj-my

Encoders (ENC)

perform the reverse operation: they take in up to 2" inputs and produce n
output bits. Their design can be approached via

@ Info

Only one input highata Multiple inputs may be high; selects

time the highest priority input
Invalid inputs yield Returns a coded output where non-
"don't care" outputs selected inputs are treated as 0

Priority encoders benefit from more compact truth tables.

Understanding “compact” function table

Inputs Outputs Inputs Outputs
D, D, D, D, | f g V Db, b, b, D, | f g V
0 0 0 0 |X X o 0 0 0 0| X X o0
1 0 0 0 0 0 1 1 0 0 0 0 0 1
X 1 0 o | o 7 , — o o 1 0 0| 0 1 1)
X X 1 0|1 o0 1 1 1 0 oo 1 1 J
(0 0 1 0 1 0 1)
X X X 1 1 1 1
[\ 0 1 1 0 1 0 1
1 0 1 0 1 0 1
k 1 1 1 0 1 0 1 Y,
fo o 0 1|1 1 1\
Exercise: Obtain the o 0 1 1|1 1 1
H H . 0 1 0 1 1 1 1
simplified expressions T
for f, gand V. S o
i@ [a[a]|a] 9]¢
1 1 0 1 1 1 1
oy \1 1 1 1 1 1 1J
Demultiplexers and Multiplexers
A selects to pass to the output, while a

directs the input to

Demultiplexers (DEMUX)

functions similarly to a

with the data acting as the

as inputs.
2x4 0 —Y,=D'S"S,
s, Decoder , | | Y,= D-S,"S,
S, —*1B 2 —>Y,=DS;-S,
E 3 Y;3=DS;S, Outputs
T — Y, =DS,"S,
D — Y, =D-S,"S,
Data D demux

Y=

D'S, 'S,

‘ T — Y, =D-S,S,

S, S,
select
Multiplexers (MUX)
A has , producing a
(similar to an encoder). Notation:
& Tip

Iy - (81-80) + 11 - (81 - 8o) + I - (81 - 8p) + I3 - (S - So)
Alternatively:

IO-mO+Il-m1+I2-m2+I3-m3.

:= Example

Given:

F(A,B,C) =

Zm0136

, we could set and others to 0.

But can we optimize?

for data inputs, using the remaining for selection.

In this case, choose (least significant), and

and the

to reconstruct the circuit efficiently.

X (a1]
£ — <
o (aV]
— o
X5 -
=g~ |0 | |O
L ~— o oo |
—,C o o o|l+~|0O
m o - oO|Oo|
<C o o ||

3 - Sequential Circuits

Introduction

= Combinational Circuit + Memory State. The outputs depend on both
and the

Memory Elements

Let @ = Q(t) denotes the and Q" = Q(t + 1) denotes the
QT =1
QT =0
QT =Q
The in states is determined by
Latches
Latches are (ON =1, OFF = 0). It give two 1 Q
and Q'. Both helps in , reducing extra inverters.
@ Info
Latch Input Set Reset Memorise Invalid
S-R SR SR =10 SR =01 SR =00 SR =11

GatedD D=SS'" EN=1,D=1 EN=1,D=0 EN=0 -

: Gated D use EN for enabling the signal and use R = S'.

Flip-flops
Flip-flops are (: ON = from 0O to 1, Negative: from1to O
and OFF otherwise). The that enables them is denoted by 1 or |.

@ Info

Flip- Input Set Reset Memorise Invalid Toggle (

flops QT =Q"
S-R SR SR=10 SR=01 SR=00 SR=11 -

D D=S8S D= D=0 | - B}

J-K JK JK=10 JK=01 JK=00 - JK =11
T JK =TT - - T=0 - T=1

: All are triggered when during 1 (work like EN in latches).

/ Note

Both and are example of , the output changes
at . Note that means outputs can

Sequential Circuits In Action

Analyzing Circuits

= Example

Derive the state table and state diagram of this circuit.

—J al— A ,—[>° J Q B
D D
—K Qp —K Q’o—l
CcP
x D L
First, we write down the :JA=B, KA=B,

JB=(A®z) =A-z+ A -2’ = KB. Note that JA is the input J of the flip-flop A

We can now write down the ,Wherey=A®z® B

Present Next
state Input state Output Flip-flop inputs
A B X At B y JA KA JB KE
0 O 0 0o 1 0 o 1 1 1
0 O 1 0 O 1 o 1 0 O
o 1 0 1 0 1 1 0 1 1
o 1 1 1 1 0 1 0 0 0
1 0 0 0 0 1 o 1 0 O
1 0 1 0 1 0 o 1 1 1
1 1 0 1 1 0 1 0 0 O
1 1 1 1 0 1 1 0 1 1

Finally, we arrive at the following , Where each node is AB and the

label on each edge is z/y.

1/1

00 0/1

110 1/1

10, (11

0/0

Designing Circuits

:= Example

Derive the state equation from state diagram

Write the consisting of the present state, input, and next state.
Use the to reverse engineer the
Create K-maps for all flip-flop inputs using as the
variables.
Present Next B
state Input state Flip-flop inputs ABX 00 01 11 10
A B x A B | JA KA JB KB ool ol ol
0 o0 0 0 o 0 X o0 X
0 0 1 o 1 |0 X 1 X A{1 x| x| x|x]
0 1 0 1 0 1 X X 1 —
0 1 1 0o 1 0 X X 0 0,
1 0 0 1 0| X 0 o0 X JA = B-x
1 0 1 1 1 X o 1 X
11 0 1 1 X 0 X 0 Bx B
0| x| x| x] x
Bx B Bx B { F
AN 00 01 11 10 AN 00 01 11 10 aj1 o] of(1]o
Ol o|[1] x| x 0| X)| x| o[%
A{1 of|li] xJ x 4{1 x|(x[1)| o KA = B-x
—— ——
X) ¢
JB=x KB=(A® X)'
$ Tip

We can quickly get the flip-flop input from this

Q O SR JK D T

0 0 0X 0X 0 0

0 1 10 1X 1 1

1 0 01 X1 0 1

1 1 X0 X0 1 0
Memory

Memory Hierarchy

: Registers > Main Memory > Disk Storage > Magnetic Tapes
: Magnetic Tapes > Disk Storage > Main Memory > Registers

Z Note

There is a trade-off between and . Below is the list of sizes:

1KB =210 bytes
1 MB = 2?0 bytes
1 GB = 230 bytes
1TB = 240 bytes

Memory Operation

All operations are activated when memory is enabled (signal is 1).

: Write to the selected word.
: Read from the selected word.

Z Note

is just memory array. Static RAMs use as the memory cells while
dynamic RAMs use , requiring constant refreshes.

4 - Pipelining

Introduction

is a technique that helps speed-up the (but not a single

one).
is the properties of the workload which is defined by the ,
i.e. it is looking at the state with ,

/ Key ideas

operating simultaneously using
is determined by the
It could have possible delays due to

MIPS Pipeline Stage
Core ideas

Each stage takes
In general, the flow of the data is from (with some on
updating PC and write back to register).

We can pipeline the execution stages of

¢/ Execution stages

Instruction Fetch
Instruction Decode and Register Read
Execute an operation or calculate an address
Access an operand in data memory
Write back the result into a register

Pipeline Datapath

Since we are executing at the same time, we need registers called
to keep track of the data in later pipeline

stages.

2 Pipeline datapath

Instruction Read and PC + 4 — — Register Numbers, 16-bit offset to be
sign-extended, and PC + 4.

Data values from registers, 32-bit immediate, and PC + 4 — — (same).
(PC + 4) + (Immediate x 4), isZero? signal, Data Read 2 — —
(same).
ALU result and Memory Read data — — (same).

At the end of the cycle, result is written back to register if applicable.

: The values are shown as: value 1 — — value 2. Value 1is
the values and value 2 is that stored
/\ Warning

Notice that there is a potential bug here. The value of WB is not the same anymore
after executing next instructions. We need to also pass the value of WB all the way to
the end.

=2

IFAD ID/EX EX/MEM MEMWB

A—V
c _|Read
Address -g register 1 Read
% Read datai [|
lnxtﬁirl;n SN i :fj:?ﬁ?izegislersdxag_'
_W;ile g
data
6 [|3
A\ Sign
\ lextend
|
Pipeline Control
We notice that We can store these
controls along with the
Some signals will after each stage since they are already

used.

Signal used in

| EX stage and i
t onwards 1
Instruction
—> Control ,|WB L
> M |— we[
:' Signal | Signal !
| generated propagated !
' in ID stage ! . along until |
[- ‘ . utilized
IF/ID ID/EX EX/MEM MEM/WB

/ Grouping control

RegDst, ALUSrc, and ALUop .

MemRead , MemWrite, Branch.

: MemToReg, RegWrite.

Performance Comparisons

Implementation

Single-Cycle

Multi-Cycle

Pipeline

/ Remark

Description

One instruction per
cycle

One stage per cycle
(resulting in shorter
cycles)

One stage per cycle
(but run in pipeline)

Cycle Time

CT = max(zgzl T3)

CT = max(T},)

CT = max(Ty) + Ty

Total execution time is calculated for I instructions.

Ty is the

v Success

is required since
and thus required different cycles.

Total Execution Time

I xCT

I x CT x Average CPI

(N+I-1)xCT

, such as reading and writing pipeline registers.

is the ideal performance gained, considering all instructions
T,I > N, and T; = 0, which is

IXNXxT IxNXxT

(N+I—1)><TN TXT = N times speed up.
Pipeline Hazards
Different Types of Hazards
Speedup is based on the assumption that could be pumped into
pipeline In reality, there are some problems that prevent these from

happening:

Using the same hardware resource at the same time.
Data dependencies between instructions (R/W from the

Change in the program flow, e.g. beq.

Structural Hazards

Delay the later instruction until there is no overlap.
Split the memory into and . Loading the data will
use the former while reading instructions will use the latter.

By exploiting the fact that registers are . We can do ReglWrite inthe
and do register reading in the

/\ Warning

It is always the case to , following the order of instruction (write is done in
, if applicable).

Data Hazards

is the data dependency that could cause the problem (but
not the WAR or WAW).
This is when the data will be but we need to
when executing subsequent instructions

Since the data read from registers will be used for We can the
data as soon as it is ready to the next instruction without waiting for RegWrite .

Time (in clock cycles) —
cc1 cc2 cc3 cc4 CcC5 CcCé6 cc7 ccs cco

Value of register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EXIMEM : X X X -20 X X X X X
Value of MEM/WB: X X X X -20 X X X X
sub $2, $1, $3 m I N .I.’

= Bypass data read

d $12, 52, $5 Reg i i
and $12, 2, $ eg from register file

or$13, $6, 52 IE—

add $14, $2, 2

id
Tl et

Hefs

= Forward results from
one stage to another

sw$15, 100(52) Rc;‘: ’ I ml
/ Remark
There is no need to after the RegWrite since the

register will already be available at that time.

In this case, the written register is only available after . In this case,
we also need to the pipeline before forwarding.
Program Time (indock cydes)
wm oC1 cCc2 CC3 CC4 (0.035) CC6 oC7 (002:] (003°) oC10
(ininstructions) > -
w2, 261 |] I -I-’ \ Stall the pipeline!]
s foi]
Plele

aso B DH

& Tip

Notice that is not necessary when register is read and
written in the same clock cycle. The first instruction is by
default.

Control Harzards

The branch instruction which decides which instructions to execute are only available in
the stage which is after

ID/EX

EX/MEM

MEM/WB

IF/ID

np

c Read
Address g register 1 Read
g data 1

Read

Instruction regste;zze
memory

1
lmst t

gisters Read
2

data Address

Wit
register

Decision is made 07 e 0
in MEM stage: Jstcton
Too late!)| ||L]@" L i _]
One quick solution is to but this could be huge penalties

since modern programs have lots of these instructions.

We add extra computational unit in the ID stage to get the branch (without waiting for
ALU). This generally creates only a However, if the registers used in
branching have , we can still experience

Together with the previous technique, we can just assume that ,
this will lead to executing some stages in advanced. If the
If it is wrong, there is no significant improvement.

We observe that using the previous techniques will leave us some X numbers of stalls (
X = 3in early branching and X = 1 in branch prediction). If there are some instructions to
and also
, the can replace the stalls with them!

There exists for us to do such technique.

We use NOP (No Operations) in place of the stalls.

Pipelining Hacks

Possible Cases Dependency Without Forwarding With Forwarding
Not Branching RAW After Non- lw +2 +0
RAW After 1w +2 +1
Branching (Late/Early) NA +3/+1 NA
RAW After Non- 1w +5/+3 +3/+2
RAW After 1w +5/+3 +4/[+3
Jump (Late/Early) NA +3/+1 NA

Delay from RAW could be reduced by
(could be complicated; safer to do with diagram).

Branch prediction (not taken) will reduced branching delay to O if the prediction is
correct.

5 - Cache

Basic Ideas

Principle of Locality

We want a way to access memory

Suppose, we store data z, we can adopt the to store something
similar to z since we are

@ Info

If z is referenced at ¢, we might need it again at ¢t + At.

If z is referenced, we might also need z + Az.

Memory Access Time

Cache memory is (faster) while normal memory is (slower). We put cache
Processor
Memory
Cache
= xjj= "B

/ Terminology

We need X.
We need Y.

‘= Example

Suppose our on-chip SRAM (cache) has 0.8 ns access time, but the fastest DRAM
(main memory) we can get has an access time of 10 ns. How high a hit rate do we
need to sustain an average access time of 1 ns?

: 1 = 0.8 x hit rate + (1 — hit rate) x (10 + 0.8). Hence, we need a hit rate of

98%.
: The above calculation is simply . If we miss, the required
time is
Direct Caching

Core Concepts

is the unit of transfer between and For example, 16-byte
block consists of 4 words.

v/ Success

We made an observation that the first 32 — N bits of the 2V -byte block are

We call bit 31 : N as and N—-1:0as

The last M bits of the block number is the : Block Number % Number
of Blocks.

Many blocks have same index. We need a : Block Number / Number of

Cache Blocks.

Memory Address
31 N N-1 0

«——Block Number «— Offset —

Offset, N = 4 bits
Block Number = 32 — 4 = 28 bits
Check: Number of Blocks = 228

31 N+M-1 N N-1 0
«— Tag Index —«— Offset —

Number of Cache Blocks

= 16KB / 16bytes = 1024 = 210
Cache Index, M = 10bits

Cache Tag =32 - 10 — 4 = 18 bits

Cache block need to store the as memory block, e.g. 16 bytes.
Since the address is We can ignore the

Cache Structure

We maintain of the memory block, and (boolean) to

indicate
There is a hit when the Tag[Index] = Tag[Memory Address].
Ifitisa , we and (simply

when loading different tag to the same index).
In either case, return the to the register.

4. Cache Circuitry: Example

16-KB cache:
4-word (16-byte) blocks
H 3130 ... 151413 ...543 210
Hit l Tag | Index I Ofst | Data
Tag \Fs 10 2 (Addr(3:2]) Block offset
Index
« Data >
Valid Tag Word0 Word1 Word2 Word3
1
1022
1023
NE
. Cache Hit= | MUX /&
[Tag Matches] | Se
' _ AND [Valid] _ | 32

Types of Cache Misses

First access of the block.
Mapped to the same index.
Cache cannot contain all blocks needed (applied to

).

Write Policy
Writing on and cause between data in
) *| Cache [*
Processor DRAM
Write Buffer

Processor writes data to
write contents of the buffer to the memory.
Maintain another bit Write operation will change this bit to 1.

When a cache block is write back to memory if dirty bit is 1.

Set Associative Caching
Core Concepts

to allocate is determined from Block Number % Number of Cache Sets.

v Success

It is similar to having , we first try to put on the first one, and if not
available can

Memory Address
31 N N-1 0

«—— Block Number «— Offset —

Offset, N = 2 bits
Block Number = 32 — 2 = 30 bits
Check: Number of Blocks = 230

31 N+M-1 N N-1 0
«—— Tag ——f—SetIndex —j«— Offset —

Number of Cache Blocks

= 4KB / 4bytes = 1024 = 210
Cache / 4bytes

4 4-way associative, number of sets

—
B
=1024 /4 = 256 = 28
Set Index, M = 8 bits

Cache Tag = 32 — 8 — 2 = 22 bits

J

Cache Structure

3130 ... 1109 ... 21 0 4-way 4-KB cache:
[Tag | 1dx] ofst | 1-word (4-byte) blocks
Jd22 18
Tag Set Infiex
V Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2
254 254 254 254
255 255 255 255
22

Note the

: @_Q
. simultaneous I [f
| "search" on all
|_tagsofaset. ST —VPL Selectz
. D
2., Data

Z Rule of thumb

A direct-mapped cache of size N has about the
of size N /2.

Fully Associative Caching
Core Concepts

A memory block in the cache.
There is We can use as the tag.

Cache Structure

Tag Offset
| 28-bit | 4-bit |
Index Tag Valid Bytes 0-3 Bytes 4-7 Bytes 8-11 Bytes 12-15

[(SI) VRN S <»]

LI

Py

& 255
No Conflict Miss (since data can go anywhere)

v Success

Use a For example, Least Recently Used (LRU).
When all cache blocks are occupied, rewrite the one selected from policy.

We can also use this policy to select the block to

The total miss is the In this type of caching,
there is

print-graph-paper.com

print-graph-paper.com

print-graph-paper.com

print-graph-paper.com

